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Spintronics

• Manipulation of electron spin for exploitation in applications relating to 

quantum information processing

• Creating a spintronic device requires the generation of spin-polarised 

electrons, typically via the application of an external field. 
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Ferromagnetism 

Ferromagnetic materials: 

• Exhibit a long-range ordering 

phenomenon due to the atomic level 

quantum mechanical interaction. 

• Unpaired electron spins in the 

ferromagnetic material line up with each 

other in regions known as domains

Ferromagnetism:

• When ferromagnetic material is placed 

close to a small external magnetic field

• Domains align themselves with each 

other and the material is magnetised

Figure 2: An unmagnetised

ferromagnetic material 

Figure 3: Domain aligning with the 

external magnetic field
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Ferromagnetic Resonance (FMR)

• A tool that can be used 

to probe the spins of 

ferromagnetic materials

• Measures magnetic 

properties by detecting 

the precessional

magnetization motion in 

a ferromagnetic sample. 

• Application of an external 

magnetic field causes 

the spins within a sample 

to align in the direction of 

the field 5



Ferromagnetic Resonance (FMR)
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Experimental Setup:

• Sample placed in Ultra High Vacuum (UHV) 

inside a quartz glass tube, which would fit inside 

the cavity. 

• Beyond this, there would be a magnet. 

• During this experiment, what we are looking to 

observe and measure is the absorption derivative/ 

absorption intensity of the microwaves



Q-Factor

• Q indicates energy loss relative to the amount of energy stored within 

the system

• Higher the Q, lower the rate of energy loss

• Q-factor of a resonant cavity:

𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑐𝑎𝑣𝑖𝑡𝑦

𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑤𝑎𝑙𝑙𝑠

• Q-factor tells you how long the photon can survive within the cavity 

(high = longer)

• More sensitive measurements of magnetism as a result due to greater 

interaction time
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Designing the Cavity

Section Overview:

• Characterising the original cavity

• Goals for new cavity

• Design considerations

• Q-factor and resonant frequency predictions and patterns

• Analysis of copper and aluminium cavities

Original Cavity Analysis

Shape Cylinder

Material Copper (Cu)

Dielectric PTFE

Resonant Frequency 12 GHz

Q-factor 2,000

Dimensions a = 9.5 mm, d = 14 mm, t = 3 mm
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Designing the Cavity

Original Cavity Frequency Response
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Goals & Constraints

Design Goals:

• High Q-factor (in the thousands)

• Low resonant frequency (2 – 8 GHz)

Production Constraints:

• Thickness: t > 2 mm

• Length: 10 < d < 80 mm

• Radius: a > 6 mm

Important Factors:

• Cavity material

• Shape

• Resonant mode

• Dielectric
10



Material Selection

Aluminium

Copper

Advantages Disadvantages

• Relatively inexpensive

• Lightweight

• Oxidises in air, leading to degradation 

of Q-factor over time

• Retains its sheen (could also be an 

advantage)

Advantages Disadvantages

• Tried-and-tested material

• Acquires a green hue upon oxidation
• Although, this can be prevented by 

gold-plating the cavity

• Suffers similar degradation in Q-factor 

as aluminium
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Shape of the Cavity

Options:

1. Hexagonal Cylinders

• Discarded due to lack of 

sufficient literature to form a 

hypothesis

2. Rectangles

• Easiest to construct

• Resonant frequency too high

3. Cylinders

• Low resonant frequencies 

possible

Rectangular Cavity Modes:
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Choice of Resonant Mode

Cylindrical Cavity Q-Factor and Resonant Frequency:
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Choice of Resonant Mode

Field Lines:

TM 010 TE 111
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Choice of Resonant Mode

Advantages of TM 010:

• High Q-factor can be obtained

• Easy to couple to (see below)

• Straight field lines inside the cavity (E-field)

Coupling Setup:

• Wire/connector

• Couple E-field

• Capacitive coupling
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Dielectric Material

Requirements:

• Easily moulded into a cylindrical shape

• Transparent to electric and magnetic fields

• Electrically insulating, but thermally conductive

Material Air PTFE FR4

Relative Permeability 1 1 1

Relative Permittivity 1 2.1 4.5

Loss tangent (at 3 GHz) 0 0.0015 0.016

Thermal Conductivity (W/m-K) 0.024 0.25 0.25

Malleability N/A More Less
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Resonant Frequency

Calculating Resonant Frequency:

𝑓𝑛𝑚𝑙 =
𝑐

2𝜋 𝜇𝑟𝜀𝑟

𝑝𝑛𝑚
𝑎

2

+
𝑙𝜋

𝑑

2

Radius required to get below 8 GHz:

Dielectric min{a} < 8 GHz (mm) d (mm)

Air 14.5 29

PTFE 10 20

FR4 6.8 13.6
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Resonant Frequency

Resonant Frequency as a function of Radius for Air:
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Q-Factor

Overall Q-Factor:

𝑄0 =
1

𝑄𝑐
+

1

𝑄𝑑

−1

Cavity Q-factor:

𝑄𝑐 =
𝑘𝑎𝜂

2𝑅𝑠
𝑄𝑐 =

2𝑉

𝑆
2

𝜔𝜇𝜎

Intermediate Values:

𝑅𝑠 =
𝜔𝜇

2𝜎
𝜂 =

𝜇

𝜀
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Q-Factor

Q-Factor as a function of Radius for Air:
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Q-Factor

Q-factor comparison for various dielectrics:

Conclusions:

• FR4 gives a much lower Q-factor as it has a large loss tangent

• Air gives the highest Q-factor

• Losses will typically be a percentage of the theoretical Q-factor

• Therefore, we chose air as our dielectric

Material Dielectric a (mm) d (mm) f (GHz) Q-factor

Copper Air 14.5 29 7.9 16,000

Copper PTFE 10 20 7.9 630

Copper FR4 6.8 13.6 7.9 62
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Aluminium Cavity

Experimental Setup:
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Aluminium Cavity

Al Cavity Response between 8.5 – 9 GHz:

Q = Resonant 

frequency/FWHM

Q = 300

Resonant frequency = 9 

GHz
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Copper Cavity

Cu Cavity Response between 11.5 – 12.5 GHz:

Q = 2,000         

Resonant frequency = 12 GHz
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Al vs. Cu Comparison and Simulations

Cavity Comparison:

Simulation Dimensions:

Material Copper (Cu) Aluminium (Al)

Cost More expensive Cheaper/Less expensive

Oxidisation Both similar Both similar

Resonant Frequency 12 GHz 9 GHz

Q factor 2000 300

a (mm) d (mm) f (GHz) Q-factor

14.5 50 7.9 15,300

14.5 29 7.9 13,160

14.5 10 7.9 8,000
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Simulation: Design 1

Radius: 14.5 mm, Height: 10 mm 

Mode Q factor Resonant Frequency (GHz)

TM 010 7590.3 7.310
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Simulation: Design 2

Radius: 14.5 mm, Height: 29 mm 

Mode Q factor Resonant Frequency (GHz)

TM 010 12302 7.310
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Simulation: Design 3

Radius: 14.5 mm, Height: 50 mm 

Mode Q factor Resonant Frequency (GHz)

TM 010 14254 7.310
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Simulation Results: Conclusion

Comparison of Predictions vs. Results:

 Simulation results discussion

 High Q-factor, 2 -8 GHz resonant frequency, strong E/M fields

Height (mm) Expected Q-

factor

Obtained Q-

factor

Expected 

Resonant

Frequency 

(GHz)

Obtained 

Resonant

Frequency 

(GHz)

10 8,000 7,590 7.9 7.3

29 13,160 12,302 7.9 7.3

50 15,300 14,254 7.9 7.3
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Final Cavity Design 

Final Cavity Model:
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Final Cavity Characteristics

Table of key parameters:

Parameter Value

Material Copper (Cu)

Shape Cylinder

Resonant Mode TM 010

Dielectric Air

Length (mm) 29

Radius (mm) 14.5

Wall Thickness (mm) 3

Predicted Q-Factor 13,160

Predicted Resonant Frequency (GHz) 7.9
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Final Cavity Performance

Cavity Response between 7.91 – 7.93 GHz:

Cavity

Version

Q-factor Resonant

Frequency 

(GHz)

Original 2,000 12

New

Predicted

13,160 7.9

New 

Actual

3,340 7.9
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Production Delays

• Significant delay in the production of the upgraded Microwave Cavity 

• Unable to conduct experiments on time to validate our hypothesis 

• New cavity arrived this week and we were able to include new results 

for the purpose of this presentation 
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Discrepancies 

Predicted Q-factor:

13,160

Actual Q-factor:

3,340

Q-factor for existing Copper Cavity:

2,000

Reasons for discrepancy:

• Oxidation of Copper

• Imperfect Coupling 

• Assumed ideal conditions during simulations
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Accurate Predictions

• Simulations were in line with theoretical predictions throughout

Predicted Resonant Frequency:

7.9 GHz

Actual Resonant Frequency:

7.9 GHz

Resonant Frequency of existing Copper Cavity:

12 GHz
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Reflection

Goal achieved:

• Design an optimal microwave to provide accurate detections of spin 

dynamics in thin-film samples

Final cavity design:

• Depicted the desired characteristics

• Higher Q-factor 

• Resonant Frequency within the target range

Issues:

• Production delay

• Lack of time due to the delay did not allow us to conduct enough 

experiments
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Further Work

Q-Factor:

• Reduce discrepancy between the idealized and actual Q-factor

FMR: 

• FMR experiment using the new cavity 

• Experiments to measure the ferromagnetic resonance of the Copper 

and Aluminum Cavities

• Wholesome comparison between old and new cavities 
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