≜UCL

Computations & Simulations for the Design of an Ultra-Sensitive Microwave Cavity

Ashlesha Bhagwat Nikita Malik Sachi Vaz

Project Overview

- ✓ Final aim
- ✓ Design requirements
- ✓ Goals and Deliverables
- ✓ Project Organisation

Spintronics

- Manipulation of electron spin for exploitation in applications relating to quantum information processing
- Creating a spintronic device requires the generation of spin-polarised electrons, typically via the application of an external field.

Ferromagnetism

Ferromagnetic materials:

- Exhibit a long-range ordering phenomenon due to the atomic level quantum mechanical interaction.
- Unpaired electron spins in the ferromagnetic material line up with each other in regions known as domains

Ferromagnetism:

- When ferromagnetic material is placed close to a small external magnetic field
- Domains align themselves with each other and the material is magnetised

Figure 2: An unmagnetised ferromagnetic material

Figure 3: Domain aligning with the external magnetic field

Ferromagnetic Resonance (FMR)

- A tool that can be used to probe the spins of ferromagnetic materials
- Measures magnetic properties by detecting the precessional magnetization motion in a ferromagnetic sample.
- Application of an external magnetic field causes the spins within a sample to align in the direction of the field

Ferromagnetic Resonance (FMR)

Experimental Setup:

- Sample placed in Ultra High Vacuum (UHV) inside a quartz glass tube, which would fit inside the cavity.
- Beyond this, there would be a magnet.
- During this experiment, what we are looking to observe and measure is the absorption derivative/ absorption intensity of the microwaves

- Q indicates energy loss relative to the amount of energy stored within the system
- Higher the Q, lower the rate of energy loss
- Q-factor of a resonant cavity:

$$Q = 2\pi \frac{\text{energy stored in cavity}}{\text{energy lost per cycle to walls}}$$

- Q-factor tells you how long the photon can survive within the cavity (high = longer)
- More sensitive measurements of magnetism as a result due to greater interaction time

Designing the Cavity

Section Overview:

- Characterising the original cavity
- Goals for new cavity
- Design considerations
- Q-factor and resonant frequency predictions and patterns
- Analysis of copper and aluminium cavities

Original Cavity Analysis

Shape	Cylinder
Material Copper (Cu)	
Dielectric	PTFE
Resonant Frequency 12 GHz	
Q-factor	2,000
Dimensions	a = 9.5 mm, d = 14 mm, t = 3 mm

Designing the Cavity

Original Cavity Frequency Response

Goals & Constraints

Design Goals:

- High Q-factor (in the thousands)
- Low resonant frequency (2 8 GHz)

Production Constraints:

- Thickness: *t* > 2 *mm*
- Length: *10 < d < 80 mm*
- Radius: *a > 6 mm*

Important Factors:

- Cavity material
- Shape
- Resonant mode
- Dielectric

Material Selection

Aluminium

Advantages	Disadvantages	
 Relatively inexpensive Lightweight 	 Oxidises in air, leading to degradation of Q-factor over time Retains its sheen (could also be an advantage) 	

Copper

A	dvantages	Disadvantages
•	 Tried-and-tested material Acquires a green hue upon oxidation Although, this can be prevented by gold-plating the cavity 	 Suffers similar degradation in Q-factor as aluminium

Shape of the Cavity

Options:

- 1. Hexagonal Cylinders
 - Discarded due to lack of sufficient literature to form a hypothesis
- 2. Rectangles
 - Easiest to construct
 - Resonant frequency too high
- 3. Cylinders
 - Low resonant frequencies
 possible

Rectangular Cavity Modes:

Choice of Resonant Mode

Cylindrical Cavity Q-Factor and Resonant Frequency:

Choice of Resonant Mode

Field Lines:

Choice of Resonant Mode

Advantages of TM 010:

- High Q-factor can be obtained
- Easy to couple to (see below)
- Straight field lines inside the cavity (E-field)

Coupling Setup:

- Wire/connector
- Couple E-field
- Capacitive coupling

Dielectric Material

Requirements:

- Easily moulded into a cylindrical shape
- Transparent to electric and magnetic fields
- Electrically insulating, but thermally conductive

Material	Air	PTFE	FR4
Relative Permeability	1	1	1
Relative Permittivity	1	2.1	4.5
Loss tangent (at 3 GHz)	0	0.0015	0.016
Thermal Conductivity (W/m-K)	0.024	0.25	0.25
Malleability	N/A	More	Less

Resonant Frequency

Calculating Resonant Frequency:

$$f_{nml} = \frac{c}{2\pi\sqrt{\mu_r\varepsilon_r}}\sqrt{\left(\frac{p_{nm}}{a}\right)^2 + \left(\frac{l\pi}{d}\right)^2}$$

Radius required to get below 8 GHz:

Dielectric	min{ <i>a</i> } < 8 GHz (mm)	<i>d</i> (mm)
Air	14.5	29
PTFE	10	20
FR4	6.8	13.6

Resonant Frequency

Resonant Frequency as a function of Radius for Air:

Overall Q-Factor:

$$Q_0 = \left(\frac{1}{Q_c} + \frac{1}{Q_d}\right)^{-1}$$

Cavity Q-factor:

$$Q_c = \frac{ka\eta}{2R_s} \qquad \qquad Q_c = \frac{2V}{S\sqrt{\frac{2}{\omega\mu\sigma}}}$$

Intermediate Values:

$$R_s = \sqrt{\frac{\omega\mu}{2\sigma}} \qquad \qquad \eta = \sqrt{\frac{\mu}{\varepsilon}}$$

Q-Factor as a function of Radius for Air:

Q-factor comparison for various dielectrics:

Material	Dielectric	a (mm)	d (mm)	f (GHz)	Q-factor
Copper	Air	14.5	29	7.9	16,000
Copper	PTFE	10	20	7.9	630
Copper	FR4	6.8	13.6	7.9	62

Conclusions:

- FR4 gives a much lower Q-factor as it has a large loss tangent
- Air gives the highest Q-factor
- Losses will typically be a percentage of the theoretical Q-factor
- Therefore, we chose air as our dielectric

Aluminium Cavity

Experimental Setup:

Cavity

Aluminium Cavity

Al Cavity Response between 8.5 – 9 GHz:

Copper Cavity

Cu Cavity Response between 11.5 – 12.5 GHz:

Q = 2,000 Resonant frequency = 12 GHz

Al vs. Cu Comparison and Simulations

Cavity Comparison:

Material	Copper (Cu)	Aluminium (Al)
Cost	More expensive	Cheaper/Less expensive
Oxidisation	Both similar	Both similar
Resonant Frequency	12 GHz	9 GHz
Q factor	2000	300

Simulation Dimensions:

a (mm)	d (mm)	f (GHz)	Q-factor
14.5	50	7.9	15,300
14.5	29	7.9	13,160
14.5	10	7.9	8,000

Simulation: Design 1

Radius: 14.5 mm, Height: 10 mm

Mode	Q factor	Resonant Frequency (GHz)
TM 010	7590.3	7.310

Simulation: Design 2

Radius: 14.5 mm, Height: 29 mm

Mode	Q factor	Resonant Frequency (GHz)
TM 010	12302	7.310

Simulation: Design 3

Radius: 14.5 mm, Height: 50 mm

Mode	Q factor	Resonant Frequency (GHz)
TM 010	14254	7.310

Simulation Results: Conclusion

Comparison of Predictions vs. Results:

Height (mm)	Expected Q- factor	Obtained Q- factor	Expected Resonant Frequency (GHz)	Obtained Resonant Frequency (GHz)
10	8,000	7,590	7.9	7.3
29	13,160	12,302	7.9	7.3
50	15,300	14,254	7.9	7.3

- ✓ Simulation results discussion
- ✓ High Q-factor, 2 -8 GHz resonant frequency, strong E/M fields

Final Cavity Design

Final Cavity Model:

Final Cavity Characteristics

Table of key parameters:

Parameter	Value
Material	Copper (Cu)
Shape	Cylinder
Resonant Mode	TM 010
Dielectric	Air
Length (mm)	29
Radius (mm)	14.5
Wall Thickness (mm)	3
Predicted Q-Factor	13,160
Predicted Resonant Frequency (GHz)	7.9

Final Cavity Performance

Cavity Response between 7.91 – 7.93 GHz:

Production Delays

- Significant delay in the production of the upgraded Microwave Cavity
- Unable to conduct experiments on time to validate our hypothesis
- New cavity arrived this week and we were able to include new results for the purpose of this presentation

Discrepancies

Predicted Q-factor:

13,160

Actual Q-factor:

3,340

Q-factor for existing Copper Cavity: 2,000

Reasons for discrepancy:

- Oxidation of Copper
- Imperfect Coupling
- Assumed ideal conditions during simulations

Accurate Predictions

• Simulations were in line with theoretical predictions throughout

Predicted Resonant Frequency:

7.9 GHz

Actual Resonant Frequency:

7.9 GHz

Resonant Frequency of existing Copper Cavity: 12 GHz

Reflection

Goal achieved:

 Design an optimal microwave to provide accurate detections of spin dynamics in thin-film samples

Final cavity design:

- Depicted the desired characteristics
- Higher Q-factor
- Resonant Frequency within the target range

Issues:

- Production delay
- Lack of time due to the delay did not allow us to conduct enough experiments

Further Work

Q-Factor:

• Reduce discrepancy between the idealized and actual Q-factor

FMR:

- FMR experiment using the new cavity
- Experiments to measure the ferromagnetic resonance of the Copper and Aluminum Cavities
- Wholesome comparison between old and new cavities